Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.210
1.
J Photochem Photobiol B ; 255: 112923, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692166

Accurately visualizing the intracellular trafficking of upconversion nanoparticles (UCNPs) loaded with phthalocyanines and achieving precise photodynamic therapy (PDT) using near-infrared (NIR) laser irradiation still present challenges. In this study, a novel NIR laser-triggered upconversion luminescence (UCL) imaging-guided nanoparticle called FA@TPA-NH-ZnPc@UCNPs (FTU) was developed for PDT. FTU consisted of UCNPs, folic acid (FA), and triphenylamino-phenylaniline zinc phthalocyanine (TPA-NH-ZnPc). Notably, TPA-NH-ZnPc showcases aggregation-induced emission (AIE) characteristic and NIR absorption properties at 741 nm, synthesized initially via molybdenum-catalyzed condensation reaction. The UCL emitted by FTU enable real-time visualization of their subcellular localization and intracellular trafficking within ovarian cancer HO-8910 cells. Fluorescence images revealed that FTU managed to escape from lysosomes due to the "proton sponge" effect of TPA-NH-ZnPc. The FA ligands on the surface of FTU further directed their transport and accumulation within mitochondria. When excited by a 980 nm laser, FTU exhibited UCL and activated TPA-NH-ZnPc, consequently generating cytotoxic singlet oxygen (1O2), disrupted mitochondrial function and induced apoptosis in cancer cells, which demonstrated great potential for tumor ablation.


Indoles , Infrared Rays , Isoindoles , Lysosomes , Mitochondria , Nanoparticles , Organometallic Compounds , Photochemotherapy , Zinc Compounds , Zinc Compounds/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Indoles/chemistry , Indoles/pharmacology , Lysosomes/metabolism , Humans , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Nanoparticles/chemistry , Cell Line, Tumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Singlet Oxygen/metabolism , Female , Folic Acid/chemistry
2.
Proc Natl Acad Sci U S A ; 121(20): e2321545121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38713621

The efficiency of photodynamic therapy (PDT) is greatly dependent on intrinsic features of photosensitizers (PSs), but most PSs suffer from narrow diffusion distances and short life span of singlet oxygen (1O2). Here, to conquer this issue, we propose a strategy for in situ formation of complexes between PSs and proteins to deactivate proteins, leading to highly effective PDT. The tetrafluorophenyl bacteriochlorin (FBC), a strong near-infrared absorbing photosensitizer, can tightly bind to intracellular proteins to form stable complexes, which breaks through the space-time constraints of PSs and proteins. The generated singlet oxygen directly causes the protein dysfunction, leading to high efficiency of PSs. To enable efficient delivery of PSs, a charge-conversional and redox-responsive block copolymer POEGMA-b-(PAEMA/DMMA-co-BMA) (PB) was designed to construct a protein-binding photodynamic nanoinhibitor (FBC@PB), which not only prolongs blood circulation and enhances cellular uptake but also releases FBC on demand in tumor microenvironment (TME). Meanwhile, PDT-induced destruction of cancer cells could produce tumor-associated antigens which were capable to trigger robust antitumor immune responses, facilitating the eradication of residual cancer cells. A series of experiments in vitro and in vivo demonstrated that this multifunctional nanoinhibitor provides a promising strategy to extend photodynamic immunotherapy.


Photochemotherapy , Photosensitizing Agents , Tumor Microenvironment , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Animals , Humans , Mice , Tumor Microenvironment/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , Cell Line, Tumor , Singlet Oxygen/metabolism , Porphyrins/pharmacology , Porphyrins/chemistry , Protein Binding , Nanoparticles/chemistry
3.
Plant Signal Behav ; 19(1): 2347783, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38699898

As sessile organisms, plants have evolved complex signaling mechanisms to sense stress and acclimate. This includes the use of reactive oxygen species (ROS) generated during dysfunctional photosynthesis to initiate signaling. One such ROS, singlet oxygen (1O2), can trigger retrograde signaling, chloroplast degradation, and programmed cell death. However, the signaling mechanisms are largely unknown. Several proteins (e.g. PUB4, OXI1, EX1) are proposed to play signaling roles across three Arabidopsis thaliana mutants that conditionally accumulate chloroplast 1O2 (fluorescent in blue light (flu), chlorina 1 (ch1), and plastid ferrochelatase 2 (fc2)). We previously demonstrated that these mutants reveal at least two chloroplast 1O2 signaling pathways (represented by flu and fc2/ch1). Here, we test if the 1O2-accumulating lesion mimic mutant, accelerated cell death 2 (acd2), also utilizes these pathways. The pub4-6 allele delayed lesion formation in acd2 and restored photosynthetic efficiency and biomass. Conversely, an oxi1 mutation had no measurable effect on these phenotypes. acd2 mutants were not sensitive to excess light (EL) stress, yet pub4-6 and oxi1 both conferred EL tolerance within the acd2 background, suggesting that EL-induced 1O2 signaling pathways are independent from spontaneous lesion formation. Thus, 1O2 signaling in acd2 may represent a third (partially overlapping) pathway to control cellular degradation.


Arabidopsis Proteins , Arabidopsis , Chloroplasts , Mutation , Signal Transduction , Singlet Oxygen , Arabidopsis/genetics , Arabidopsis/metabolism , Singlet Oxygen/metabolism , Chloroplasts/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Signal Transduction/genetics , Mutation/genetics , Photosynthesis/genetics
4.
Anal Chem ; 96(19): 7697-7705, 2024 May 14.
Article En | MEDLINE | ID: mdl-38697043

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Lanthanoid Series Elements , Magnetic Resonance Imaging , Nanoparticles , Polymers , Semiconductors , Magnetic Resonance Imaging/methods , Animals , Lanthanoid Series Elements/chemistry , Polymers/chemistry , Nanoparticles/chemistry , Mice , Humans , Gadolinium/chemistry , Luminescence , Singlet Oxygen/chemistry , Yttrium/chemistry , Fluorides/chemistry , Mice, Nude
5.
J Photochem Photobiol B ; 255: 112906, 2024 Jun.
Article En | MEDLINE | ID: mdl-38688040

New functionalities were added to biocompatible polycaprolactone nanofiber materials through the co-encapsulation of chlorin e6 trimethyl ester (Ce6) photogenerating singlet oxygen and absorbing light both in the blue and red regions, and using 4-(N-(aminopropyl)-3-(trifluoromethyl)-4-nitrobenzenamine)-7-nitrobenzofurazan, NO-photodonor (NOP), absorbing light in the blue region of visible light. Time-resolved and steady-state luminescence, as well as absorption spectroscopy, were used to monitor both photoactive compounds. The nanofiber material exhibited photogeneration of antibacterial species, specifically nitric oxide and singlet oxygen, upon visible light excitation. This process resulted in the efficient photodynamic inactivation of E. coli not only close to nanofiber material surfaces due to short-lived singlet oxygen, but even at longer distances due to diffusion of longer-lived nitric oxide. Interestingly, nitric oxide was also formed by processes involving photosensitization of Ce6 during irradiation by red light. This is promising for numerous applications, especially in the biomedical field, where strictly local photogeneration of NO and its therapeutic benefits can be applied using excitation in the "human body phototherapeutic window" (600-850 nm). Generally, due to the high permeability of red light, the photogeneration of NO can be achieved in any aqueous environment where direct excitation of NOP to its absorbance in the blue region is limited.


Anti-Bacterial Agents , Escherichia coli , Light , Nanofibers , Nitric Oxide , Porphyrins , Singlet Oxygen , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Nanofibers/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/radiation effects , Porphyrins/chemistry , Porphyrins/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Chlorophyllides , Polyesters/chemistry
6.
J Inorg Biochem ; 256: 112545, 2024 Jul.
Article En | MEDLINE | ID: mdl-38581803

Trinuclear ruthenium(II) polypyridyl complexes anchored to benzimidazole-triazine / trisamine scaffolds were investigated as photosensitizers for photodynamic therapy. The trinuclear complexes were noted to produce a significant amount of singlet oxygen in both DMF and aqueous media, are photostable and show appreciable emission quantum yields (ɸem). In our experimental setting, despite the moderate phototoxic activity in the HeLa cervical cancer cell line, the phototoxic indices (PI) of the trinuclear complexes are superior relative to the PIs of a clinically approved photosensitizer, Photofrin®, and the pro-drug 5-aminolevulinic acid (PI: >7 relative to PI: >1 and PI: 4.4 for 5-aminolevulinic acid and Photofrin®, respectively). Furthermore, the ruthenium complexes were noted to show appreciable long-term cytotoxicity upon light irradiation in HeLa cells in a concentration-dependent manner. Consequently, this long-term activity of the ruthenium(II) polypyridyl complexes embodies their ability to reduce the probability of the recurrence of cervical cancer. Taken together, this presents a strong motivation for the development of polymetallic complexes as anticancer agents.


Coordination Complexes , Photochemotherapy , Photosensitizing Agents , Ruthenium , Uterine Cervical Neoplasms , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , HeLa Cells , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Ruthenium/chemistry , Female , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Photochemotherapy/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Singlet Oxygen/metabolism
7.
J Colloid Interface Sci ; 667: 91-100, 2024 Aug.
Article En | MEDLINE | ID: mdl-38621335

The development of efficient and multifunctional sonosensitizers is crucial for enhancing the efficacy of sonodynamic therapy (SDT). Herein, we have successfully constructed a CoOx-loaded amorphous metal-organic framework (MOF) UIO-66 (A-UIO-66-CoOx) sonosensitizer with excellent catalase (CAT)- and glutathione-oxidase (GSH-OXD)-like activities. The A-UIO-66-CoOx exhibits a 2.6-fold increase in singlet oxygen (1O2) generation under ultrasound (US) exposure compared to crystalline UIO-66 sonosensitizer, which is attributed to its superior charge transfer efficiency and consistent oxygen (O2) supply. Additionally, the A-UIO-66-CoOx composite reduces the expression of glutathione peroxidase (GPX4) by depleting glutathione (GSH) through Co3+ and Co2+ valence changes. The high levels of highly cytotoxic 1O2 and deactivation of GPX4 can lead to lethal lipid peroxidation, resulting in concurrent apoptosis and ferroptosis. Both in vitro and vivo tumor models comprehensively confirmed the enhanced SDT antitumor effect using A-UIO-66-CoOx sonosensitizer. Overall, this study emphasizes the possibility of utilizing amorphization engineering to improve the effectiveness of MOFs-based sonosensitizers for combined cancer therapies.


Apoptosis , Ferroptosis , Metal-Organic Frameworks , Ultrasonic Therapy , Ferroptosis/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Humans , Apoptosis/drug effects , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Inbred BALB C , Drug Screening Assays, Antitumor , Cell Survival/drug effects , Cell Proliferation/drug effects , Particle Size , Cobalt/chemistry , Cobalt/pharmacology , Surface Properties , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Cell Line, Tumor
8.
Methods Mol Biol ; 2798: 11-26, 2024.
Article En | MEDLINE | ID: mdl-38587733

Reactive oxygen species (ROS) are produced by energy transfer and electron transport in plant chloroplast thylakoids at non-toxic levels under normal growth conditions, but at threatening levels under adverse or fluctuating environmental conditions. Among chloroplast ROS, singlet oxygen and superoxide anion radical, respectively, produced by photosystem II (PSII) and PSI, are known to be the major ROS under several stress conditions. Both are very unlikely to diffuse out of chloroplasts, but they are instead capable of triggering ROS-mediated chloroplast operational retrograde signalling to activate defence gene expression in concert with hormones and other molecular compounds. Therefore, their detection, identification and localization in vivo or in biological preparations is a priority for a deeper understanding of their role in (concurrent) regulation of plant growth and defence responses. Here, we present two EPR spin traps, abbreviated as TEMPD-HCl and DEPMPO, to detect and identify ROS in complex systems, such as isolated thylakoids, together with some hints and cautions to perform reliable spin trapping experiments.


Superoxides , Thylakoids , Singlet Oxygen , Reactive Oxygen Species , Spin Trapping , Anions
9.
Methods Mol Biol ; 2798: 27-43, 2024.
Article En | MEDLINE | ID: mdl-38587734

Singlet oxygen is a reactive oxygen species that causes oxidative damage to plant cells, but intriguingly it can also act as a signalling molecule to reprogram gene expression required to induce plant physiological/cellular responses. Singlet oxygen photosensitization in plants mainly occurs in chloroplasts after the molecular collision of ground-state molecular oxygen with triplet-excited-state chlorophyll. Singlet oxygen direct detection through phosphorescence emission in chloroplasts is a herculean task due to its extremely low luminescence quantum yield. Because of this, indirect alternative methods have been developed for its detection in biological systems, for example, by measuring the changes in the EPR signal or fluorescence intensity of singlet oxygen reaction-based probes. The singlet oxygen chemiluminescence (SOCL) is a chemiluminescence probe with high sensitivity and selectivity towards singlet oxygen and promising use to detect it in living cells without the inconvenience of low stability of the EPR signal of spin probes in the presence of redox compounds, spurious light scattering coming from the light source required for the excitation of fluorescence probes or the light emission of endogenous fluorescent molecules like chlorophyll in chloroplasts. The protocol presented in this chapter describes the first steps to characterizing singlet oxygen production within the biological system under study; this is accomplished through monitoring molecular oxygen consumption by SOCL using a Clark-type oxygen electrode and measuring the chemiluminescence generated by SOCL 1,2-dioxetane using a spectrofluorometer. For singlet oxygen detection within living cells, a version of SOCL with increased membrane permeability (SOCL-CPP) is described.


Luminescence , Singlet Oxygen , Oxygen , Chlorophyll , Fluorescent Dyes
10.
Nanoscale ; 16(16): 8074-8089, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38563405

Amyloid aggregation is implicated in the pathogenesis of various neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). It is critical to develop high-performance drugs to combat amyloid-related diseases. Most identified nanomaterials exhibit limited biocompatibility and therapeutic efficacy. In this work, we used a solvent-free carbonization process to prepare new photo-responsive carbon nanodots (CNDs). The surface of the CNDs is densely packed with chemical groups. CNDs with large, conjugated domains can interact with proteins through π-π stacking and hydrophobic interactions. Furthermore, CNDs possess the ability to generate singlet oxygen species (1O2) and can be used to oxidize amyloid. The hydrophobic interaction and photo-oxidation can both influence amyloid aggregation and disaggregation. Thioflavin T (ThT) fluorescence analysis and circular dichroism (CD) spectroscopy indicate that CNDs can block the transition of amyloid from an α-helix structure to a ß-sheet structure. CNDs demonstrate efficacy in alleviating cytotoxicity induced by Aß42 and exhibit promising blood-brain barrier (BBB) permeability. CNDs have small size, low biotoxicity, good fluorescence and photocatalytic properties, and provide new ideas for the diagnosis and treatment of amyloid-related diseases.


Amyloid beta-Peptides , Carbon , Carbon/chemistry , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Humans , Catalysis , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Blood-Brain Barrier/metabolism , Animals , Protein Aggregates/drug effects , Quantum Dots/chemistry , Amyloid/chemistry , Amyloid/metabolism , Cell Survival/drug effects , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Hydrophobic and Hydrophilic Interactions
11.
Inorg Chem ; 63(15): 6822-6835, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38560761

Boron-dipyrromethene (BODIPY) dyes are promising photosensitizers for cellular imaging and photodynamic therapy (PDT) owing to their excellent photophysical properties and the synthetically tunable core. Metalation provides a convenient way to overcome the drawbacks arising from their low aqueous solubility. New photo-/redox-responsive Co(III) prodrug chaperones are developed as anticancer PDT agents for efficient cellular delivery of red-light-active BODIPY dyes. The photobiological activity of heteroleptic Co(III) complexes derived from tris(2-pyridylmethyl)amine (TPA) and acetylacetone-conjugated PEGylated distyryl BODIPY (HL1) or its dibromo analogue (HL2), [CoIII(TPA)(L1/L2)](ClO4)2 (1 and 2), are investigated. The Co(III)/Co(II) redox potential is tuned using the Co(III)-TPA scaffold. Complex 1 displays the in vitro release of BODIPY on red light irradiation. Complex 2, having good singlet oxygen quantum yield (ΦΔ âˆ¼ 0.28 in DMSO), demonstrates submicromolar photocytotoxicity to HeLa cancer cells (IC50 ≈ 0.23 µM) while being less toxic to HPL1D normal cells in red light. Cellular imaging using the emissive complex 1 shows mitochondrial localization and significant penetration into the HeLa tumor spheroids. Complex 2 shows supercoiled DNA photocleavage activity and apoptotic cell death through phototriggered generation of reactive oxygen species. The Co(III)-BODIPY prodrug conjugates exemplify new type of phototherapeutic agents with better efficacy than the organic dyes alone in the phototherapeutic window.


Antineoplastic Agents , Photochemotherapy , Porphobilinogen/analogs & derivatives , Prodrugs , Humans , Boron/pharmacology , Red Light , Coloring Agents , Prodrugs/pharmacology , Cobalt/pharmacology , Photosensitizing Agents/radiation effects , Antineoplastic Agents/radiation effects , Boron Compounds/pharmacology , Boron Compounds/radiation effects , Singlet Oxygen/metabolism , Light
12.
J Chem Phys ; 160(16)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38682739

In photodynamic therapy (PDT) treatment, heavy-atom-free photosensitizers (PSs) are a great source of singlet oxygen photosensitizer. Reactive oxygen species (ROS) are produced by an energy transfer from the lowest energy triplet excited state to the molecular oxygen of cancer cells. To clarify the photophysical characteristics in the excited states of a few experimentally identified thionated (>C=S) molecules and their oxygenated congeners (>C=O), a quantum chemical study is conducted. This study illustrates the properties of the excited states in oxygen congeners that render them unsuitable for PDT treatment. Concurrently, a hierarchy is presented based on the utility of the lowest-energy triplet excitons of thionated compounds. Their non-radiative decay rates are calculated for reverse-ISC and inter-system crossover (ISC) processes. In addition, the vibronic importance of C=O and C=S bonds is clarified by the computation of the Huang-Rhys factor, effective vibrational mode, and reorganization energy inside the Marcus-Levich-Jörtner system. ROS generation in thionated PSs exceeds their oxygen congeners as kf ≪ kISC, where radiative decay rate is designated as kf. As a result, the current work offers a calculated strategy for analyzing the effectiveness of thionated photosensitizers in PDT.


Photochemotherapy , Photosensitizing Agents , Singlet Oxygen , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Singlet Oxygen/chemistry , Quantum Theory
13.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673875

Photodynamic therapy is expected to be a less invasive treatment, and strategies for targeting mitochondria, the main sources of singlet oxygen, are attracting attention to increase the efficacy of photodynamic therapy and reduce its side effects. To date, we have succeeded in encapsulating the photosensitizer rTPA into MITO-Porter (MP), a mitochondria-targeted Drug Delivery System (DDS), aimed at mitochondrial delivery of the photosensitizer while maintaining its activity. In this study, we report the results of our studies to alleviate rTPA aggregation in an effort to improve drug efficacy and assess the usefulness of modifying the rTPA side chain to improve the mitochondrial retention of MITO-Porter, which exhibits high therapeutic efficacy. Conventional rTPA with anionic side chains and two rTPA analogs with side chains that were converted to neutral or cationic side chains were encapsulated into MITO-Porter. Low-MP (MITO-Porter with Low Drug/Lipid) exhibited high drug efficacy for all three types of rTPA, and in Low-MP, charged rTPA-encapsulated MP exhibited high drug efficacy. The cellular uptake and mitochondrial translocation capacities were similar for all particles, suggesting that differences in aggregation rates during the incorporation of rTPA into MITO-Porter resulted in differences in drug efficacy.


Hydrophobic and Hydrophilic Interactions , Mitochondria , Photochemotherapy , Photosensitizing Agents , Porphyrins , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Humans , Photochemotherapy/methods , Porphyrins/chemistry , Porphyrins/pharmacology , Nanoparticles/chemistry , Drug Delivery Systems/methods , Cell Line, Tumor , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry
14.
Chemosphere ; 357: 141858, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636910

The non-free radical oxidation pathway (PMS-NOPs) of peroxymonosulfate (PMS) holds significant promise for practical wastewater treatment applications, owing to its low oxidation potential, high PMS utilization rate, and robust anti-interference capability in the degradation of pollutants. A novel activator copper nitrogen co-doped porous biochar (Cu-N-BC) with rich defect edges and functional groups was obtained by adding Cu and N to the biochar matrix generated by sodium alginate through pyrolysis in this study. Under the condition of 1 mM PMS, 30 mg/L activator was used to activate PMS and achieve efficient degradation of 10 mg/L paracetamol (PCT) within 15 min, with a high reaction rate constants (kobs) of 0.391 min-1. The activation mechanism of the Cu-N-BC/PMS/PCT system was a non-radical activation pathway with the dominance of singlet oxygen (1O2) and the presence of catalyst-mediated electron transfer. The graphite nitrogen, pyridine nitrogen, and Cu-N coordination introduced by Cu/N co-doping, as well as the carbon skeleton and CO functional group of biochar, were considered active sites that promote the 1O2 generation. The Cu-N-BC/PMS system exhibits strong stability, eco-friendliness, effective mineralization, and interference resistance across diverse pH levels (3-11) and interfering ions, including Cl-, H2PO4-, NO3-, SO42-, and humic acid. Remarkably, it efficiently degrades PCT in tap and lake water, achieving a notable 63.73% TOC mineralization rate, with leached copper ions below 0.02 mg/L. This research introduces a novel method for obtaining metal nitrogen carbon activators and enhances understanding of PMS non-radical activation pathways and active sites.


Acetaminophen , Charcoal , Copper , Nitrogen , Oxidation-Reduction , Peroxides , Singlet Oxygen , Water Pollutants, Chemical , Charcoal/chemistry , Copper/chemistry , Acetaminophen/chemistry , Water Pollutants, Chemical/chemistry , Singlet Oxygen/chemistry , Nitrogen/chemistry , Peroxides/chemistry , Electron Transport , Wastewater/chemistry , Catalysis
15.
J Inorg Biochem ; 256: 112570, 2024 Jul.
Article En | MEDLINE | ID: mdl-38685138

This work reports on the synthesis of triphenylphosphine-labelled cationic phthalocyanines (Pc) complexed with bovine serum albumin (BSA) and gold nanoparticles (Au NPs). This nano-complex (Pc-BSA-Au) is studied for its photodynamic therapy (PDT) activity compared to the non-complexed Pc counterpart. The photochemical properties and in vitro PDT efficacies of the Pc and the nano-complex were determined and are compared herein. The singlet oxygen (1O2) yields of the Pcs were determined and are reported in DMF. A singlet oxygen quantum yield of 0.47 was obtained for the Pcs. The PDT efficacies of the complexes were thereafter determined using malignant melanoma A375 cancer cell line in vitro. An increase in the cell toxicity was observed for cells treated with Pc-BSA-Au compared to those treated with the Pc alone. The cell survival percentages were 23.1% for cells treated with Pc-BSA-Au and 48.7% for those treated with Pc alone under PDT treatments.


Gold , Indoles , Isoindoles , Melanoma , Metal Nanoparticles , Organophosphorus Compounds , Photochemotherapy , Photosensitizing Agents , Serum Albumin, Bovine , Gold/chemistry , Gold/pharmacology , Serum Albumin, Bovine/chemistry , Humans , Metal Nanoparticles/chemistry , Photochemotherapy/methods , Indoles/chemistry , Indoles/pharmacology , Cell Line, Tumor , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Melanoma/drug therapy , Melanoma/pathology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Cattle , Singlet Oxygen/metabolism
16.
J Environ Manage ; 358: 120846, 2024 May.
Article En | MEDLINE | ID: mdl-38599079

Recently, the Fenton-like reaction using peroxymonosulfate (PMS) has been acknowledged as a potential method for breaking down organic pollutants. In this study, we successfully synthesized a highly efficient and stable single atom molybdenum (Mo) catalyst dispersed on nitrogen-doped carbon (Mo-NC-0.1). This catalyst was then utilized for the first time to activate PMS and degrade bisphenol A (BPA). The Mo-NC-0.1/PMS system demonstrated the ability to completely degrade BPA within just 20 min. Scavenging tests and density functional theory (DFT) calculations have demonstrated that the primary reactive oxygen species was singlet oxygen (1O2) produced by Mo-N4 sites. The self-cycling of Mo facilitated PMS activation and the transition from a free radical activation pathway to a non-radical pathway mediated by 1O2. Simultaneously, the nearby pyridinic N served as adsorption sites to immobilize BPA and PMS molecules. The exceptionally high catalytic activity of Mo-NC-0.1 derived from its unique Mo-N coordination, which markedly reduced the distance for 1O2 to migrate to the BPA molecules. The Mo-NC-0.1/PMS system effectively reduced the acute toxicity of BPA and exhibited excellent cycling stability with minimal leaching. This study presented a new catalyst with high selectivity for 1O2 generation and provided valuable insights for the application of single atom catalysts in PMS-based AOPs.


Molybdenum , Singlet Oxygen , Catalysis , Molybdenum/chemistry , Singlet Oxygen/chemistry , Nitrogen/chemistry , Benzhydryl Compounds/chemistry , Phenols/chemistry , Peroxides/chemistry
17.
Int J Biol Macromol ; 266(Pt 2): 131359, 2024 May.
Article En | MEDLINE | ID: mdl-38580018

The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a promising strategy for cancer treatment. However, the poor photostability and photothermal conversion efficiency (PCE) of organic small-molecule photosensitizers, and the intracellular glutathione (GSH)-mediated singlet oxygen scavenging largely decline the antitumor efficacy of PTT and PDT. Herein, a versatile nanophotosensitizer (NPS) system is developed by ingenious incorporation of indocyanine green (ICG) into the PEGylated chitosan (PEG-CS)-coated polydopamine (PDA) nanoparticles via multiple π-π stacking, hydrophobic and electrostatic interactions. The PEG-CS-covered NPS showed prominent colloidal and photothermal stability as well as high PCE (ca 62.8 %). Meanwhile, the Michael addition between NPS and GSH can consume GSH, thus reducing the GSH-induced singlet oxygen scavenging. After being internalized by CT26 cells, the NPS under near-infrared laser irradiation produced massive singlet oxygen with the aid of thermo-enhanced intracellular GSH depletion to elicit mitochondrial damage and lipid peroxide formation, thus leading to ferroptosis and apoptosis. Importantly, the combined PTT and PDT delivered by NPS effectively inhibited CT26 tumor growth in vivo by light-activated intense hyperthermia and redox homeostasis disturbance. Overall, this work presents a new tactic of boosting antitumor potency of ICG-mediated phototherapy by PEG-CS-covered NPS.


Chitosan , Glutathione , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Photothermal Therapy , Polyethylene Glycols , Chitosan/chemistry , Photochemotherapy/methods , Animals , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Glutathione/metabolism , Polyethylene Glycols/chemistry , Mice , Nanoparticles/chemistry , Photothermal Therapy/methods , Cell Line, Tumor , Indocyanine Green/chemistry , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/pathology , Singlet Oxygen/metabolism , Humans , Apoptosis/drug effects , Indoles/chemistry , Indoles/pharmacology , Polymers/chemistry
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124311, 2024 Aug 05.
Article En | MEDLINE | ID: mdl-38663131

In this study, a set of potential quasi-intrinsic photosensitizers for two-photon photodynamic therapy (PDT) are proposed based on the unnatural 2-amino-8-(1'-ß-ᴅ-2'-deoxyribofuranosyl)-imidazo[1,2-ɑ]-1,3,5-triazin-4(8H)-one (P), which is paired with the 6-amino-5-nitro-3-(1'-ß-ᴅ-2'-deoxyribofuranosyl)-2(1H)-pyridone (Z) and can specifically recognize breast and liver cancer cells. Herein, the effects of sulfur substitution and electron-donating/electron-withdrawing groups on the photophysical properties in aqueous solution are systematically investigated. The one- and two-photon absorption spectra evidence that the modifications could result in red-shifted absorption wavelength and large two-photon absorption cross-section, which contributes to selective excitation and provides effective PDT for deep-seated tissues. To ensure the efficient triplet state population, the singlet-triplet energy gaps and spin-orbit coupling constants were examined, which is responsible for a rapid intersystem crossing rate. Furthermore, these thiobase derivatives are characterized by the long-lived T1 state and the large energy gap for radiationless transition to ensure the generation of cytotoxic singlet oxygen.


Photochemotherapy , Photons , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Humans , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Cell Line, Tumor
19.
Biochemistry ; 63(9): 1214-1224, 2024 May 07.
Article En | MEDLINE | ID: mdl-38679935

A central goal of photoprotective energy dissipation processes is the regulation of singlet oxygen (1O2*) and reactive oxygen species in the photosynthetic apparatus. Despite the involvement of 1O2* in photodamage and cell signaling, few studies directly correlate 1O2* formation to nonphotochemical quenching (NPQ) or lack thereof. Here, we combine spin-trapping electron paramagnetic resonance (EPR) and time-resolved fluorescence spectroscopies to track in real time the involvement of 1O2* during photoprotection in plant thylakoid membranes. The EPR spin-trapping method for detection of 1O2* was first optimized for photosensitization in dye-based chemical systems and then used to establish methods for monitoring the temporal dynamics of 1O2* in chlorophyll-containing photosynthetic membranes. We find that the apparent 1O2* concentration in membranes changes throughout a 1 h period of continuous illumination. During an initial response to high light intensity, the concentration of 1O2* decreased in parallel with a decrease in the chlorophyll fluorescence lifetime via NPQ. Treatment of membranes with nigericin, an uncoupler of the transmembrane proton gradient, delayed the activation of NPQ and the associated quenching of 1O2* during high light. Upon saturation of NPQ, the concentration of 1O2* increased in both untreated and nigericin-treated membranes, reflecting the utility of excess energy dissipation in mitigating photooxidative stress in the short term (i.e., the initial ∼10 min of high light).


Photosynthesis , Singlet Oxygen , Thylakoids , Electron Spin Resonance Spectroscopy/methods , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Thylakoids/metabolism , Thylakoids/chemistry , Spin Trapping/methods , Chlorophyll/metabolism , Chlorophyll/chemistry , Spinacia oleracea/metabolism , Spinacia oleracea/chemistry , Light
20.
Environ Sci Pollut Res Int ; 31(19): 28025-28039, 2024 Apr.
Article En | MEDLINE | ID: mdl-38523211

Azo dyes, widely used in the textile industry, contribute to effluents with significant organic content. Therefore, the aim of this work was to synthesize cobalt ferrite (CoFe2O4) using the combustion method and assess its efficacy in degrading the azo dye Direct Red 80 (DR80). TEM showed a spherical structure with an average size of 33 ± 12 nm. Selected area electron diffraction and XRD confirmed the presence of characteristic crystalline planes specific to CoFe2O4. The amount of Co and Fe metals were determined by ICP-OES, indicating an n(Fe)/n(Co) ratio of 2.02. FTIR exhibited distinct bands corresponding to Co-O (455 cm-1) and Fe-O (523 cm-1) bonds. Raman spectroscopy detected peaks associated with octahedral and tetrahedral sites. For the first time, the material was applied to degrade DR80 in an aqueous system, with the addition of persulfate. Consistently, within 60 min, these trials achieved nearly 100% removal of DR80, even after the material had undergone five cycles of reuse. The pseudo-second-order model was found to be the most fitting model for the experimental data (k2 = 0.07007 L mg-1 min-1). The results strongly suggest that degradation primarily occurred via superoxide radicals and singlet oxygen. Furthermore, the presence of UV light considerably accelerated the degradation process (k2 = 1.54093 L mg-1 min-1). The material was applied in a synthetic effluent containing various ions, and its performance consistently approached 100% in the photo-Fenton system. Finally, two degradation byproducts were identified through HPLC-MS/MS analysis.


Cobalt , Ferric Compounds , Singlet Oxygen , Cobalt/chemistry , Ferric Compounds/chemistry , Singlet Oxygen/chemistry , Superoxides/chemistry , Azo Compounds/chemistry , Water Pollutants, Chemical/chemistry , Coloring Agents/chemistry , Iron/chemistry , Hydrogen Peroxide/chemistry
...